Using luminescent quantum dot (QD) films as greenhouse coverings offers a novel approach to enhancing plant growth by modifying the light spectrum. This study evaluates the effects of novel QD glass on the growth, morphology, and yield of butterhead lettuce (Lactuca sativa cv. butterhead) in a greenhouse setting. Two identical greenhouses were employed: one fitted with a QD film and the other with conventional glass, serving as a control. Lettuce seedlings were cultivated in a deep-water culture hydroponic system, with continuous monitoring of key environmental parameters—including temperature, relative humidity, CO₂ concentration, and light spectrum. After four weeks of growth, various morphological traits were assessed, such as canopy diameter, leaf count, total leaf area, and fresh and dry biomass. Results indicated that lettuce grown under the QD glass displayed enhanced leaf development and significantly higher biomass accumulation, with a 37% increase in fresh weight and a 27% rise in dry weight compared to the control. The spectral modifications induced by the QD film, especially the conversion of blue photons to red wavelengths, likely contributed to these improvements in plant morphology and productivity. These findings highlight the potential of QD glass to boost greenhouse lettuce production by increasing radiation capture and biomass accumulation.