Regenerative farming practices focus on improving soil health and creating resilient agricultural systems, offering long-term sustainability and environmental benefits compared to conventional organic methods. This study investigated the effects of an in-season cover cropping practice on insect and weed density and crop yield on California’s Central Coast. Two field trials compared regenerative and standard organic systems. Weed populations were assessed biweekly using 50cm x 50cm quadrats, while insect populations were monitored with yellow sticky cards and direct counts. Yields were measured in kilograms per hectare and categorized as fresh marketable, processed marketable, and unmarketable. Both treatments were planted on 80-inch beds using certified organic inputs and methods. The regenerative treatment featured a cereal cover crop in the bed center, with two rows of transplants on either side. The first trial took place at Cal Poly San Luis Obispo Organic Farm (Jan–May 2024) with cabbage and sudan grass (three replicates). The second was at a grower’s field near San Ardo, CA (Feb–June 2025) with sweet baby broccoli and ryegrass (four replicates). In Trial 1, weed coverage was not significantly different between treatments (19.6 ± 5.3% for standard organic, 14.9 ± 0.7% for regenerative). Flea beetles were the most common pests, with no significant differences in pest densities (370.67 ± 24.17 vs. 403.11 ± 23.27). Predator and parasitoid insect counts were similar, and no pollinators were observed. Total yields were 5730.91 ± 5688.32 kg/ha for standard organic and 4929.50 ± 4890.27 kg/ha for regenerative. Fresh marketable yields were comparable (3169.77 ± 3139.50 vs. 3237.02 ± 3204.51). Although both treatments experienced high weed pressure, regenerative plots had fewer weeds, suggesting the grass cover crop may aid suppression. Insect density was numerically higher in regenerative plots, which also had slightly lower yields—possibly due to the grass strip. In the second trial, effective weed management led to no observed weeds. Higher insect densities were found in regenerative plots. These findings indicate that regenerative practices, such as incorporating a grass cover crop, may influence weed suppression and insect activity, though they may also slightly reduce yields. Continued research is needed to better understand these trade-offs and optimize regenerative system design for both productivity and ecological benefits.