Loading…
Friday August 1, 2025 10:45am - 11:00am CDT
The preservation of bioactive compounds in fruit juices is essential for maintaining their nutritional value and consumer appeal. This study explores the potential of Continuous Flow High-Pressure Homogenization (CFHPH) as a promising alternative to traditional thermal processing methods, such as High-Temperature Short-Time (HTST), in fruit juice production. CFHPH has demonstrated effectiveness in preserving bioactive compounds, including ascorbic acid, carotenoids, anthocyanins, and phenolic acids, while significantly reducing the thermal degradation of heat-sensitive compounds associated with HTST. In this research, we compared CFHPH to HTST in juices from horticultural crops, including watermelon, blueberry, and grapefruit. CFHPH treatment at 300 MPa and an inlet temperature of 4 °C maintained higher levels of carotenoids, anthocyanins, and ascorbic acid during storage, while also reducing the activity of oxidative enzymes such as polyphenol oxidase (PPO) and peroxidase (POD) across all tested fruits. In contrast, HTST processing resulted in a considerable loss of bioactive compounds due to oxidation and thermal degradation. CFHPH not only preserved essential nutrients but also extended shelf life under market-simulated storage conditions by minimizing oxidative damage and reducing particulate sedimentation, making it an ideal solution for the growing demand for minimally processed, nutrient-rich fruit juices. This technology offers significant potential for the horticulture and food industries, ensuring fresh, nutritious, and appealing juices for health-conscious consumers.
Speakers Co-authors
KA

Koushik Adhikari

University of Georgia
NA
RS

Rakesh Singh

University of Georgia
NA
Friday August 1, 2025 10:45am - 11:00am CDT
Foster 1

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link