Loading…
Friday August 1, 2025 10:30am - 10:45am CDT
The profile of volatile organic compounds (VOCs) in tomato (Solanum lycopersicum) fruit significantly influences their sensory attributes, particularly aroma, which affects consumer preference. This study examines variation in VOCs between commercially processed tomato products and greenhouse-grown tomatoes, focusing on processing techniques and how they alter VOC profiles. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed for detailed VOC profiling. Optimization of HS-SPME parameters, including salt-assisted extraction, extraction temperature, and fiber selection, enabled precise identification and quantification of VOCs. The optimized conditions involved extracting samples in a 30% NaCl solution to maximize volatile release, adsorption onto a 50/30 µm DVB/CAR/PDMS fiber at 80 °C for 30 minutes, and analysis using a Restek Rtx-Wax column with helium as the carrier gas. SPME-GC-MS analysis confirmed that processing techniques significantly influence the release, chemical nature, and composition of VOCs. Commercially processed tomato products exhibited elevated levels of volatiles such as (Z)-3-hexenal and (E)-2-hexenal. Since processed products often undergo thermal treatments such as pasteurization and decontamination, the reduction in volatile composition compared to fresh, unprocessed tomatoes could be attributed to the thermal degradation of heat-sensitive compounds such as cis- and trans-hexanol, hexanal, geranial, and methyl salicylate, contributing to a pronounced cooked tomato aroma. In contrast, greenhouse-grown tomatoes, cultivated under controlled conditions, contained lower overall VOC concentrations but retained higher levels of methyl salicylate and norisoprenoids, yielding a milder, sweeter aroma profile, which is generally absent in processed products. This study underscores the impact of processing on tomato aroma and highlights the importance of optimizing analytical methods for VOC profiling. Detailed VOC profiling offers valuable insights for breeders and food processors seeking to enhance the flavor quality of both greenhouse-grown and processed tomato products. This research was supported by USDA-NIFA-2024-51181-43464 and USDA-NIFA-AFRI-2023-67013-39616 through the Vegetable and Fruit Improvement Center and the Institute for Advancing Health Through Agriculture at Texas A
Speakers
DC

Debanjan Chatterjee

Texas A
Debanjan Chatterjee, PhD, is a dedicated researcher specializing in natural products chemistry and pharmacological studies. He earned his B.Pharm in 2017, followed by an M.S. (Pharm) from the National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, in 2019... Read More →
Co-authors
Friday August 1, 2025 10:30am - 10:45am CDT
Strand 11A

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link