Loading…
Thursday July 31, 2025 5:15pm - 5:30pm CDT
While agricultural plastic mulch significantly enhances crop yields, its widespread use generates substantial plastic waste, raising serious environmental concerns. Traditional disposal methods such as landfilling and incineration not only contribute to greenhouse gas emissions but also result in valuable resource losses. To address these challenges, this study performs a systematic life cycle assessment (LCA) comparing five end-of-life (EOL) strategies for polyethylene (PE) mulch films in strawberry cultivation: conventional landfilling, incineration, pyrolysis-based conversion, wood-plastic composite (WPC) production, and asphalt modification. A gate-to-gate LCA framework was adopted, with system boundaries spanning from on-farm mulch collection to final material or energy recovery. Environmental impacts were evaluated using the TRACI 2.1 methodology, encompassing global warming potential (GWP), cumulative energy demand, air/water pollution, land occupation, resource recovery efficiency, microplastic leakage risks, and human health impacts. Results reveal distinct trade-offs among the EOL pathways. Pyrolysis emerges as the optimal energy recovery strategy, reducing fossil fuel dependence by converting 85% of plastic waste into syngas while mitigating microplastic release. WPC production demonstrates superior material circularity, repurposing 92% of waste into durable construction materials with a 40-year service life. Asphalt modification offers the lowest GWP (1.2 kg CO₂-eq/kg plastic) and reduces virgin polymer demand by 30%, though its long-term microplastic leaching requires further investigation. In contrast, landfilling and incineration exhibit 60-75% higher life cycle emissions and fail to recover material value. This study provides the first comprehensive comparison of agricultural plastic waste management strategies that integrates both energy recovery and material upcycling paradigms. By extending traditional LCA boundaries to include microplastic pollution risks and long-term degradation effects, the findings offer actionable insights for policymakers to prioritize scalable, resource-efficient solutions that align with circular economy principles in agri-plastic management.
Speakers
avatar for Jianying Wang

Jianying Wang

Washington State University
Co-authors
LY

Liang Yu

Kentucky State University
NA
TC

Ting Chi

Washington State University
Thursday July 31, 2025 5:15pm - 5:30pm CDT
Foster 2
  Oral presentation, Plasticulture
  • Subject Plasticulture
  • Poster # csv
  • Funding Source USDA SCRI 2022-51181-38325
  • Funding Option SCRI funded all or part of the research associated with this abstract

Attendees (2)


Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link