Loading…
Thursday July 31, 2025 4:15pm - 4:30pm CDT
Polyethylene (PE) mulch is a valuable tool that suppresses weeds, optimizes the soil and canopy microclimate, and enhances efficient production of quality fruits and vegetables. However, PE mulch is not biodegradable and limited cost-effective waste management options lead to large amounts of used PE mulch being annually landfilled, stockpiled on farms, burned, and sometimes buried in soil. The objective of this presentation is to review the status of alternative mulch technologies that have the potential to reduce plastic waste generation in strawberry (Fragaria × ananassa) cultivation with an emphasis on soil-biodegradable plastic mulch (BDM), hydromulch, and cellulose-based film. Several commercial BDM products have been available in the market since the 1990s and are made using a blend of fossil-fuel derived and biobased ingredients. Trials conducted in Washington State show strawberry yield and fruit quality are comparable when plants are grown with black PE mulch or BDM. Green BDM deteriorates rapidly depending on environmental conditions. Rapid deterioration may lead to increased weed pressure and reduced production similar to bare ground cultivation. Hydromulch is a sprayable mulch alternative that can be formulated with ingredients that meet the requirements for certified organic production in North America, whereas commercially available BDMs do not meet these requirements. Trials carried out in Washington State and North Dakota demonstrated hydromulch maintains strawberry yield and fruit quality. Hydromulch formulations with guar gum demonstrate superior mechanical properties relative to formulations without or with other tackifiers. Reduced weed suppression, the logistics of sourcing hydromulch feedstock, lack of specialized application equipment, and high material and application costs are current barriers to this emerging technology. Cellulose-based film, such as lignocellulose film, is another fully biodegradable and emerging alternative to PE mulch and can be made with ingredients suitable for certified organic production. Field trials with cellulose-based film are limited, but current findings show high levels of biodegradability and maintenance of crop growth. Growers, crop consultants, and marketers should consider biodegradable mulch alternatives to reduce plastic waste generation and persistent plastic pollution in agricultural and environmental settings, particularly if recycling is not available or a cost-effective option.
Speakers
MG

Makonya Givemore Munashe

Washington State University
Co-authors
AW

Aidan Williams

Washington State University
AD

Andrew Durado

Montana State University
NA
BW

Ben Weiss

Washington State University
Ben is from Philadelphia and has been interested in food systems since an early age. He attended his first natural products expo before kindergarten because his parents worked in the natural foods industry. During late adolescence, he started a prolific tomato garden that blossomed... Read More →
CM

Carol Miles

Washington State University
DG

Deirdre Griffin LaHue

Washington State University
NA
DB

Dilpreet Bajwa

Montana State University
NA
GG

Greta Gramig

North Dakota State University
NA
HD

Haishun Du

University of Wisconsin-Madison
NA
LW

Lisa Wasko DeVetter

Washington State University
Lisa Wasko DeVetter joined Washington State University in 2014 and leads the small fruit horticulture program at the Northwestern Washington Research and Extension Center in Mount Vernon, Washington. She has developed a diverse research and extension program with an emphasis on maximizing... Read More →
NS

Nataliya Shcherbatyuk

Washington State University
NA
NG

Nayab Gull

Washington State University
Nayab is a Ph.D. student in the crop and soil science department Washington state University. She received her masters degree in Crop Cultivation and Farming Systems from China Agricultural University.
SP

Suzette Pedroso Galinato

Washington State University
NA
WA

Waqas Ahmad

North Dakota State University
NA
XP

Xuejun Pan

University of Wisconsin-Madison
NA
Thursday July 31, 2025 4:15pm - 4:30pm CDT
Foster 2
  Oral presentation, Plasticulture
  • Subject Plasticulture
  • Poster # csv
  • Funding Source Funding was provided by the USDA Specialty Crops Research Initiative Award 2022-51181-38325, Agriculture and Food Research Initiative Award 2023-68016-38933, and Organic Research and Extension Initiative 2021-51300-34909 from the USDA National Institute of Food and Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. Additional support was provided by NIFA Hatch projects 7003737, 7001317, and W5188 Multi-State Project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.
  • Funding Option SCRI funded all or part of the research associated with this abstract

Attendees (4)


Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link