Polyethylene glycol (PEG) is widely used to simulate drought stress in plant germination studies due to its ability to induce osmotic stress without being absorbed by plant tissues. This study investigates the effects of PEG-induced drought stress on the seed germination of various ornamental plant species, including Celosia argentea, Petunia hybrida, Rudbeckia hirta, Salvia splendens, and Zinnia elegans. Seeds are treated with different concentrations of PEG-6000 (0%, 5%, 10%, and 15%) to mimic varying levels of water deficit. Germination trials are conducted under controlled environmental conditions using LED lights with a 16/8-hour photoperiod to simulate light/dark conditions, and an optimum temperature of 70-75°F (21-23°C) to support ideal germination and seedling growth. Current seed research trials are underway with aims to evaluate germination-related traits under stress, including germination percentage, mean germination time, germination rate, and seedling vigor. These traits are used to assess the early-stage drought tolerance of ornamental plants. Understanding how different species respond to water stress at the germination stage is crucial for the ornamental plant industry, as it supports the selection and development of more resilient varieties suited for landscapes and markets increasingly affected by water scarcity.