Phosphorus is well known for being a nutrient vital for plants, influencing key stages of plant cycle. However, its efficiency can be reduced by nutrient fixation processes or leaching, with challenging strategies to enhance phosphorus availability. Hydrogel polymers have been proposed as soil amendments to improve moisture retention and nutrient uptake. This study evaluates the impact of hydrogel polymer combined with different phosphorus rates on the growth and yield of Snap Bean (Phaseolus vulgaris). The experiment consists of six phosphorus rates of 0, 100, 150, 200, 250, and 300 lbs/A P2O5, and a hydrogel rate of 30 lbs/A. Treatments were arranged in a randomized complete block design with 4 replications per treatment, and 4 rows per replication. Growth parameters such as Plant Height, Leaf chlorophyll content, weekly tissue sampling. Yield parameters such as number of pods per plant, pod weight, pod yield were also assessed. Data analysis is performed using one-way ANOVA in R Studio, with post-hoc comparisons using Tukey’s HSD test at P