Phosphorus (P) is a macronutrient essential for plant growth and yield; however, its availability in spodosols is often limited due to high acidity, low organic matter, and strong adsorption to soil minerals, particularly iron (Fe) and aluminum (Al) in tropic Spodosol in Northeast Florida. Efficient P management is essential for optimizing crop productivity while minimizing environmental risks. This study investigated the effects of different P fertilizer rates on Potato (Solanum tuberosum, L.) growth, yield, and nutrient dynamics at the UF/IFAS Hastings Agricultural Extension Center, Northeast Florida over two consecutive growing seasons (Spring 2022 and Sprin 2023). A randomized complete block design was employed, with five P rates of 0, 90, 135, 180, and 225 kg ha-1 of phosphorus pentoxide (P2O5) as triple superphosphate (TSP). The changes in plant growth, nutrient uptake, yield, as well as soil properties were determined to evaluate the effectiveness of P fertilization as plant growth performance and tuber yield. The results showed that P application significantly increased potato tuber yield compared to the control, with the highest yield observed at 225 kg ha-1 P2O5. Pearson correlation analysis indicated strong associations between plant growth, tuber yield, and nutrient accumulation. Principal component analysis (PCA) highlighted notable seasonal differences in tuber yield and soil characteristics. The study highlights the importance of site-specific P recommendation to synchronize nutrient availability with crop demand, particularly in nutrient-poor spodosols in Northeast Florida. These findings provide a scientific basis for establishing P fertilizer thresholds that balance crop productivity with environmental sustainability in agricultural systems.