Land use is a major concern for our society, which impacts governmental regulations, industry and agriculture, and individual property owners. Agrivoltaics (APV) includes the combination of agriculture and photovoltaics energy production on a single plot of land. APV has been proposed as a way to integrate agriculture into large-scale photovoltaic arrays or integrate energy production into established agricultural operations. The objectives of this project were to establish replicated APV research trials with fixed vertical panel photovoltaic arrays and investigate the feasibility of growing various warm- and cool-season crops between them. Warm-season crops included tomato, watermelon, bush bean, and zucchini. Cool-season crops included fall-planted lettuce and beets as well as spring-planted spinach and lettuce. Vertical panels were constructed with four replications that examined systems effects of APV compared to the open-field. A split-plot randomized complete block design was utilized, whereby main plots included system and sub-plots were the crops. For each crop, yield, marketability, quality, and economic data were collected. Crop quality parameters tested included: visual quality, color, firmness, titratable acidity, and total soluble solids. Additionally, PAR sensors were located within crop rows to characterize light availability at the replicated site as well as at another solar array. Sensors were placed approximately 2.5’ above the ground surface to generally mimic mature plant canopy height, transversely across the expected light-treatment area. From the first year of study, similarities among the two systems (APV and open-field) were more numerous than significant differences. Only one statistically-significant treatment effect was found on crop yield, among one of two lettuce varieties grown in the fall (P